skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Yumeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. McCartney, J.S. ; Tomac, I. (Ed.)
    Immiscible multiphase flow in porous media is largely affected by interfacial properties, manifested in contact angle and surface tension. The gas-liquid surface tension can be significantly altered by suspended particles at the interface. Particle-laden interfaces have unique properties, for example, a lower surface tension of interfaces laden with surfactants or nanoparticles. This study investigates the impacts of a motile bacterium Escherichia coli ( E. coli , strain ATCC 9637) on the air-water surface tension. Methods of the maximum bubble pressure, the du Noüy ring, and the pendant droplet are used to measure the surface tension of the motile-bacteria-laden interfaces. Measured surface tension remains independent to the E. coli concentration when using the maximum bubble pressure method, decreases with increased E. coli concentration in the du Noüy ring method, and presents time-dependent changes by the pendant drop method. The analyses show that the discrepancies may come from the different convection-diffusion processes of E. coli in the flow among various testing methods. 
    more » « less
  2. McCartney, J.S. ; Tomac, I. (Ed.)
    Multiphase flow patterns in porous media largely depend on the properties of the fluids and interfaces such as viscosity, surface tension, and contact angle. Microorganisms in soils change the fluid and interfacial properties, and thus can alter multiphase fluid flow in porous media. This study investigates the impact of motile bacterium Escherichia coli ( E. coli ) on fluid displacement patterns in a microfluidic chip. The fluid displacement is observed during the saturation and the desaturation processes of the microfluidic chip with and without E.coli suspension. Time-lapse photography results show that the presence of E.coli alters the displacement patterns during the wetting and drying process and changes the residual saturation of the chip. Although studies of the impacts of motility on interfacial properties remain elusive, these results bring the expectation to the manipulation of multiphase transport in porous media and the adaptive control of industrial and environmental flow processes using active particles. 
    more » « less
  3. Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure–property–performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water–salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.

     
    more » « less
  4. Abstract

    2D freestanding nanocrystal superlattices represent a new class of advanced metamaterials in that they can integrate mechanical flexibility with novel optical, electrical, plasmonic, and magnetic properties into one multifunctional system. The freestanding 2D superlattices reported to date are typically constructed from symmetrical constituent building blocks, which have identical structural and functional properties on both sides. Here, a general ligand symmetry‐breaking strategy is reported to grow 2D Janus gold nanocrystal superlattice sheets with nanocube morphology on one side yet with nanostar on the opposite side. Such asymmetric metallic structures lead to distinct wetting and optical properties as well as surface‐enhanced Raman scattering (SERS) effects. In particular, the SERS enhancement of the nanocube side is about 20‐fold of that of the nanostar side, likely due to the combined “hot spot + lightening‐rod” effects. This is nearly 700‐fold of SERS enhancement as compared with the symmetric nanocube superlattices without Janus structures.

     
    more » « less